x^2+42=(2x)^2

Simple and best practice solution for x^2+42=(2x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+42=(2x)^2 equation:



x^2+42=(2x)^2
We move all terms to the left:
x^2+42-((2x)^2)=0
determiningTheFunctionDomain x^2-2x^2+42=0
We add all the numbers together, and all the variables
-1x^2+42=0
a = -1; b = 0; c = +42;
Δ = b2-4ac
Δ = 02-4·(-1)·42
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*-1}=\frac{0-2\sqrt{42}}{-2} =-\frac{2\sqrt{42}}{-2} =-\frac{\sqrt{42}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*-1}=\frac{0+2\sqrt{42}}{-2} =\frac{2\sqrt{42}}{-2} =\frac{\sqrt{42}}{-1} $

See similar equations:

| (3x+1)^2=18 | | 60=25.75+.10x | | 6/x+1/9=7/x | | 18–11z=3z+42 | | -8b-(-6)=2 | | 56=27x | | 4x+17+80+12=180 | | 3x-3+x=4x+16 | | 2=-5+p/4 | | 1.5x+3=5+1.5x | | -.33(4)+b=4 | | 12+80+4x+17=180 | | -10=-2n-(-9) | | 2.5x+15+0.5-3.5=1.2+1.8-4 | | 1.5x=1.5x | | 250=108.5041×t | | (-36)+x=-15 | | p+(-12)/11=8 | | 2x^2−16x+50=0 | | 4x^2+5-20=0 | | -5n-8(1+7n(=-8 | | v+2=2v | | 3=4y+6 | | p-(-9)/8=-1 | | c+52=5c | | π=x | | 1/2×+4=x-1 | | 6.03x=1.89 | | m-12.97=-14.35 | | c+52=52 | | 10b=b+45 | | 6-3c=8-3+11c |

Equations solver categories